Engineering Mechanics: Dynamics 8th Edition

Engineering Mechanics: Dynamics 8th Edition
  • Author: James L. Meriam and L. G. Kraige
    Publisher: Wiley
    Genres: Science Engineering
    Publish Date: June 22, 2015
    ISBN-10: 1118885848
    Pages: 736
    File Type: PDF
    Language: English

Book Preface

Engineering mechanics is both a foundation and a framework for most of the branches of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and agricultural engineering, and of course engineering mechanics itself, are based upon the subjects of statics and dynamics. Even in a discipline such as electrical engineering, practitioners, in the course of considering the electrical components of a robotic device or a manufacturing process, may fi nd themselves fi rst having to deal with the mechanics involved.Thus, the engineering mechanics sequence is critical to the engineering curriculum. Not only is this sequence needed in itself, but courses in engineering mechanics also serve to solidify the student’s understanding of other important subjects, including applied mathematics, physics, and graphics. In addition, these courses serve as excellent settings in which to strengthen problem-solving abilities.


The primary purpose of the study of engineering mechanics is to develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering. This capacity requires more than a mere knowledge of the physical and mathematical principles of mechanics; also required is the ability to visualize physical confi gurations in terms of real materials, actual constraints, and the practical limitations which govern the behavior of machines and structures. One of the primary objectives in a mechanics course is to help the student develop this ability to visualize, which is so vital to problem formulation. Indeed, the construction of a meaningful mathematical model is often a more important experience than its solution. Maximum progress is made when the principles and their limitations are learned together within the context of engineering application. There is a frequent tendency in the presentation of mechanics to use problems mainly as a vehicle to illustrate theory rather than to develop theory for the purpose of solving problems. When the fi rst view is allowed to predominate, problems tend to become overly idealized and unrelated to engineering with the result that the exercise becomes dull, academic, and uninteresting. This approach deprives the student of valuable experience in formulating problems and thus of discovering the need for and meaning of theory. The second view provides by far the stronger motive for learning theory and leads to a better balance between theory and application. The crucial role played by interest and purpose in providing the strongest possible motive for learning cannot be overemphasized. Furthermore, as mechanics educators, we should stress the understanding that, at best, theory can only approximate the real world of mechanics rather than the view that the real world approximates the theory. This difference in philosophy is indeed basic and distinguishes the engineering of mechanics from the science of mechanics. Over the past several decades, several unfortunate tendencies have occurred in engineering education. First, emphasis on the geometric and physical meanings of prerequisite mathematics appears to have diminished. Second, there has been a signifi cant reduction and even elimination of instruction in graphics, which in the past enhanced the visualization and representation of mechanics problems. Third, in advancing the mathematical level of our treatment of mechanics, there has been a tendency to allow the notational manipulation of vector operations to mask or replace geometric visualization. Mechanics is inherently a subject which depends on geometric and physical perception, and we should increase our efforts to develop this ability.

A special note on the use of computers is in order. The experience of formulating problems, where reason and judgment are developed, is vastly more important for the student than is the manipulative exercise in carrying out the solution. For this reason, computer usage must be carefully controlled. At present, constructing free-body diagrams and formulating governing equations are best done with pencil and paper. On the other hand, there are instances in which the solution to the governing equations can best be carried out and displayed using the computer. Computer-oriented problems should be genuine in the sense that there is a condition of design or criticality to be found, rather than “makework” problems in which some parameter is varied for no apparent reason other than to force artifi cial use of the computer. These thoughts have been kept in mind during the design of the computer-oriented problems in the Eighth Edition. To conserve adequate time for problem formulation, it is suggested that the student be assigned only a limited number of the computer-oriented problems.

As with previous editions, this Eighth Edition of Engineering Mechanics is written with the foregoing philosophy in mind. It is intended primarily for the fi rst engineering course in mechanics, generally taught in the second year of study. Engineering Mechanics is written in a style which is both concise and friendly. The major emphasis is on basic principles and methods rather than on a multitude of special cases. Strong effort has been made to show both the cohesiveness of the relatively few fundamental ideas and the great variety of problems which these few ideas will solve.

  • File Type: PDF
  • Upload Date: November 13, 2018

Do you like this book? Please share with your friends!

How to Read and Open File Type for PC ?

You may also be interested in the following ebook:

Oil & Gas Production in Nontechnical Language Oil & Gas Production in Nontechnical Language
  • Martin S. Raymond and Dr. William L. Leffler
Engineering Mechanics: Statics 8th Edition Engineering Mechanics: Statics 8th Edition
  • James L. Meriam and L. G. Kraige