Biomedical Engineering Handbook, Volume I

Biomedical Engineering Handbook, Volume I

Book Preface

As we enter the new millennium, the prospects for the field of Biomedical Engineering are bright. Individuals interested in pursuing careers in this field continue to increase and the fruits of medical innovation continue to yield both monetary rewards and patient well being. These trends are reflected in this second edition of the Biomedical Engineering Handbook. When compared to the first edition published in 1995, this new two-volume set includes new sections on “Transport Phenomena and Biomimetic Systems” and “Ethical Issues Associated with Medical Technology”. In addition, over 60% of the chapters has been completely revised, incorporating the latest developments in the field. therefore, this second edition is truly an updated version of the “state-of-the-field of biomedical engineering”. As such, it can serve as an excellent reference for individuals interested not only in a review of  fundamental physiology, but also in quickly being brought up to speed in certain areas of biomedical engineering research. It can serve as an excellent textbook for students in areas where traditional textbooks have not yet been developed, and serve as an excellent review of the major areas of activity in each biomedical engineering subdiscipline, such as biomechanics biomaterials, clinical engineering, artificial intelligence, etc., and finally it can serve as the “bible” for practicing biomedical engineering professionals by covering such topics as a “Historical Perspective of Medical Technology, the Role of Professional Societies and the Ethical Issues Associated with Medical Technology”.

Biomedical Engineering is no longer an emerging discipline; it has become an important vital interdisciplinary field. Biomedical engineers are involved in many medical ventures. They are involved in the design, development and utilization of materials, devices (such as pacemakers, lithotripsy, etc.) and techniques (such as signal processing, artificial intelligence, etc.) for clinical research and use; and serve as members of the health care delivery team (clinical engineering, medical informatics, rehabilitation engineering, etc.) seeking new solutions for difficult heath care problems confronting our society. To meet the needs of this diverse body of biomedical engineers, this handbook provides a central core of knowledge in those fields encompassed by the discipline of biomedical engineering as we enter the 21st century. Before presenting this detailed information, however, it is important to provide a sense of the evolution of the modern health care system and identify the diverse activities biomedical engineers perform to assist in the diagnosis and treatment of patients.

Evolution of the Modern Health Care System

Before 1900, medicine had little to offer the average citizen, since its resources consisted mainly of the physician, his education, and his “little black bag.” In general, physicians seemed to be in short supply, but the shortage had rather different causes than the current crisis in the availability of health care professionals. Although the costs of obtaining medical training were relatively low, the demand for doctors’ services also was very small, since many of the services provided by the physician also could be obtained from experienced amateurs in the community. The home was typically the site for treatment and recuperation, and relatives and neighbors constituted an able and willing nursing staff. Babies were delivered by midwives, and those illnesses not cured by home remedies were left to run their natural, albeit frequently fatal, course. The contrast with contemporary health care practices, in which specialized physicians and nurses located within the hospital provide critical diagnostic and treatment services, is dramatic. The changes that have occurred within medical science originated in the rapid developments that took place in the applied sciences (chemistry, physics, engineering, microbiology, physiology, pharmacology, etc.) at the turn of the century. This process of development was characterized by intense interdisciplinary cross-fertilization, which provided an environment in which medical research was able to take giant strides in developing techniques for the diagnosis and treatment of disease. For example, in 1903, Willem Einthoven, the Dutch physiologist, devised the first electrocardiograph to measure the electrical activity of the heart. In applying discoveries in the physical sciences to the analysis of biologic process, he initiated a new age in both cardiovascular medicine and electrical measurement techniques.

New discoveries in medical sciences followed one another like intermediates in a chain reaction. However, the most significant innovation for clinical medicine was the development of x-rays. These “new kinds of rays,” as their discoverer W. K. Roentgen described them in 1895, opened the “inner man” to medical inspection. Initially, x-rays were used to diagnose bone fractures and dislocations, and in the process, x-ray machines became commonplace in most urban hospitals. Separate departments of radiology were established, and their influence spread to other departments throughout the hospital. By the 1930s, x-ray visualization of practically all organ systems of the body had been made possible through the use of barium salts and a wide variety of radiopaque materials.

X-ray technology gave physicians a powerful tool that, for the first time, permitted accurate diagnosis of a wide variety of diseases and injuries. Moreover, since x-ray machines were too cumbersome and expensive for local doctors and clinics, they had to be placed in health care centers or hospitals. Once there, x-ray technology essentially triggered the transformation of the hospital from a passive receptacle for the sick to an active curative institution for all members of society.

For economic reasons, the centralization of health care services became essential because of many other important technological innovations appearing on the medical scene. However, hospitals remained institutions to dread, and it was not until the introduction of sulfanilamide in the mid-1930s and penicillin in the early 1940s that the main danger of hospitalization, i.e., cross infection among patients, was significantly reduced. With these new drugs in their arsenals, surgeons were able to perform their operations without prohibitive morbidity and mortality due to infection. Furthermore, even though the different blood groups and their incompatibility were discovered in 1900 and sodium citrate was used in 1913 to prevent clotting, full development of blood banks was not practical until the 1930s, when technology provided adequate refrigeration. Until that time, “fresh” donors were bled and the blood transfused while it was still warm.

  • File Type: PDF
  • Upload Date: October 2, 2017

Do you like this book? Please share with your friends!

How to Read and Open File Type for PC ?

You may also be interested in the following ebook:

Nuclear Reactor Systems Nuclear Reactor Systems
  • Bertrand Barre and Pascal Anzieu
Transport Phenomena, Revised 2nd Edition Transport Phenomena, Revised 2nd Edition
  • R. Byron Bird and Warren E. Stewart
Theory of Machines and Mechanisms 3rd Edition Theory of Machines and Mechanisms 3rd Edition
  • Gordon R. Pennock and John J. Uicker